

CARBOMICA WEBINAR

A Carbon Mitigation Tool in Healthcare Facilities

18 September 2023

Jetina Tsvaki Data Scientist

Craig Parker Data Scientist

Farah Houdroge Mathematical Modeller

aiding distribution of climate mitigation resources in healthcare

SPECIFIC OBJECTIVES

- 1. Identify and select suitable indicators for quantifying and monitoring the global, EU and national-level health impacts of extreme heat among pregnant and postpartum women, newborns and infants in Europe and sub-Saharan Africa;
- 2. Develop and test an Early Warning System using a smartphone app to provide individualized heat stress warnings, and locally adapted messaging for protecting pregnant and postpartum women, infants and health workers;
- 3. Identify cost-effective, integrated adaptation-mitigation interventions to alleviate heat impacts on health workers, and to reduce carbon emissions associated with health care;
- 4. Support global and EU climate policies and activities on the monitoring of direct and indirect impacts of climate change on health, and the strengthening of Early Warning Systems through guidance documents, and risk assessment and cost-benefit analysis tools.

ADAPTATION & MITIGATION

Objective 3a and 3b:

Identify cost-effective, integrated adaptation-mitigation interventions to

alleviate heat impacts on health workers, and to reduce carbon emissions associated with health care

Approach:

Implementation and evaluation of integrated adaptation-mitigation actions in health facilities in Kenya, South Africa and Zimbabwe

Pre- and post-intervention comparison

MITIGATION

AKDN

HIGH

AGA KHAN DEVELOPMENT NETWORK

> AKDN's Carbon Measurement Tool in Kenya, South Africa and Zimbabwe

Pre- and post-intervention comparison of health facility emissions

Calculate carbon footprint of your organization or operations

Identify carbon emissions hotspots areas that represent most of carbon emissions

Climate Vital Signs

Disparities in Global Data: Population, Poverty, and Carbon Emissions

Source: Our World in Data

Background

 The escalating climate crisis poses profound threats to global public health, marked by exacerbated weather extremities and declining air quality, both detrimental to human health (IPCC, 2022; Kurane, 2010).

Need for CARBOMICA

- Africa Climate Week in Nairobi focused on climate finance, loss, damage, and justice.
- Cleaner energy and transport can boost health, but lack of healthcare funds limits climate change efforts (Watts et al., 2015).

Need for CARBOMICA

Disadvantaged communities face greater environmental health risks and *lack funds* for mitigation (Brulle & Pellow, 2006).

Policy interventions and *increased funding* are needed to address health and climate change together (Friel et al., 2008).

What is CARBOMICA

CARBOMICA is a tool from the HIGH Horizons initiative for carbon mitigation in healthcare.

It guides decision-makers on resource allocation for climate action in healthcare.

Designed as a data science tool, it optimizes resource use to reduce carbon emissions in healthcare facilities, especially in LMICs

Objectives

Enabling Scenario Analysis

Scope of CARBOMICA

1.	Healthcare sector focus:	 CARBOMICA is designed specifically for the healthcare industry, considering the unique requirements, operations, and challenges faced by healthcare organizations in mitigating their carbon emissions.
2.	Carbon mitigation strategies:	 The tool focuses on evaluating and prioritizing a range of interventions and strategies that aim to reduce carbon emissions within the healthcare sector. This includes areas such as energy efficiency, waste management, transportation optimization, and other operational practices.
3.	Data-driven analysis:	 CARBOMICA utilizes data inputs related to healthcare operations, energy consumption, waste management, and transportation, among others, to perform quantitative analysis and modeling of emissions and intervention impacts.
4.	Decision support and reporting:	• CARBOMICA provides decision support by offering a decision matrix that quantifies and weighs the impact, feasibility, and scalability of interventions. It generates reports and visualizations to communicate the results of scenario analysis and aid in decision-making.
	5. Stakeholder engagement:	 CARBOMICA emphasizes stakeholder engagement, incorporating the input and expertise of healthcare professionals, industry experts, and policymakers throughout its development and implementation process.

Conceptual Framework

Approach

Stakeholder Engagement

Engaging with stakeholders within the HIGH Horizons
 Consortium, the Burnet Institute and healthcare
 professionals to understand challenges and requirements
 specific to carbon mitigation in the healthcare sector.

Data Collection & Processing

- Comprehensive collection of:
 - Carbon mitigations interventions
 - Carbon emissions
- Quality assurance for:
 - Carbon data accuracy and reliability
- Organization of data covering:
 - Operations
 - Energy consumption
 - Waste management
 - Transportation
 - Other factors

Carbon Emissions Data Collection

Use AKDN tool to gather monthly data on emissions, energy use, waste, transportation, etc.

Intervention List

Source strategies based on best practices, guidelines, and expert opinions targeting energy efficiency, waste reduction, etc.

Intervention Evaluation

Review details from articles for prioritizing interventions using a decision matrix.

Intervention Costs

Obtain cost data from local sources for financial feasibility.

Adapting the Atomica Framework: From HIV/TB to Carbon Emissions Modeling

- Before: Optimized resources for HIV/TB treatment.
- Now: Models carbon emissions in health facilities.
- How We Adapted:
- 1.Used environmental data instead of health data.
- 2.Created new scenarios for carbon sources like energy and waste.
- 3.Goal changed to reducing carbon emissions.
- **Result**: A tool that helps make healthcare more eco-friendly.

CARBOMICA Framework

👛 cark

្រ mai

👛 fa

🖿 te <u>.</u> 🗋 RE 🗋 car 🗋 ge

🗋 ing 🗋 rur

🗋 rur 🗅 ut

pomica Private		⊙ Watch 1 - ♀ Fork 1 - ★ Starred
🔹 🕈 🕈 branch 🔊 0 tags		Go to file Add file - Code - About
ahhoudroge scenario runs		No description, website, or topics p 1932fd5 last week ①24 commits
nb_checkpoints		
ycache		last week
oks		last week
nplates		
ignore		generate books ny
ADME.md	Add files via upload	generate_bookstpy
bomica_framework.xlsx		Script to generate a databook and progbook.
nerate_books.py		
ut_data.xlsx		run_program_checks.py
_budget_scenario.py		Script to check output of programs under certain coverage and bud
_coverage_scenario.py		intervention effects to 0 (perfect effect), the same unit_cost for all in
_optimization.py		unit_cost) or (1 x unit_cost) produces the correct outputs (a program
_program_checks.py		
s.py		run_coverage_scenario.py
		Script to run a scenario where coverage of interventions is specified.
		<pre>run_budget_scenario.py</pre>
		Script to run a scenario where spending on interventions is specified

get conditions. E.g.: It can be useful to set terventions, and check that spending (0.5 x effect of 0.5 or 0, respectively).

run_optimisation.py

Script to optimize the allocation of funds.

utils.py

Module containing utility functions.

Atomica Framework

Generate an excel input •Create an input excel file that contains respective information

Generate books

•Using the atomica engine to generate framework, databook and progbook based on the input data

Run the optimization •Run the optimization script to find best

Run coverage scenario

•Run coverage scenario script to find how different coverage scenarios will impact carbon reduction

Run budget scenarios

•Run coverage scenario script to find how different budget scenarios will impact carbon reduction

Decision Matrix

Intervention	Impact	Feasibility	Scalability	Prioritization Score
Intervention 1	High	Medium	High	
Intervention 2	Medium	High	Low	
Intervention 3	Low	High	High	
Intervention 4	High	High	Medium	
Intervention 5	Medium	Low	Medium	

How does CARBOMICA works

Results: Case Study Mt Darwin Hosp

General information

- Mount Darwin District, located in Mashonaland Central Province, Zimbabwe
- Rural setting characterized by a humid subtropical climate with dry winters and hot summers.

Results: Case Study Mt Darwin Hosp

Elevation Data:

"SRTM Digital Elevation Data. (2023). Elevation over Mount Darwin. NASA's Shuttle Radar Topography Mission. Retrieved from Google Earth Engine."

NDVI Data (derived from MODIS):

"MODIS Terra. (2023). Normalized Difference Vegetation Index (NDVI) over Mount Darwin. NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC). Retrieved from Google Earth Engine."

Case Study Mt Darwin Hosp

NO2 and Heat in Mount Darwin over last 5 years

Land Surface Temperature (LST):

"MODIS Terra. (2023). Land Surface Temperature over Mount Darwin. NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC). Retrieved from USGS Earth Explorer."

NO₂ Data:

"Sentinel-5P TROPOMI. (2023). Nitrogen Dioxide (NO₂) Level over Mount Darwin. European Space Agency. Retrieved from Copernicus Open Access Hub."

NO2 Column Number Density over Mount Darwin (past 5 years)

Results: Case Study Mt Darwin Hosp

- Established in 1992.
- Expansive medical complex.
- Spans an area of 34,925 square meters.
- Comprises a network of 20 buildings.
- Dedicated to providing comprehensive healthcare services.
- Serves the community.

Scope	Emission area	January	February	March	April	May	June	Total
	SC1 Building energy	0.31	0.28	0.37	0.31	1.20	1.21	3.68
	SC1 Travel	6.13	3.73	1.66	3.01	6.13	7.10	27.75
Scope 1	SC1 Refrigerants	-	-	-	-	-	-	-
	SC1 On-site incineration	0.36	0.38	0.48	0.30	0.36	0.40	2.28
	SC1 Anaesthetic gases	0.51	0.51	0.51	0.51	0.51	0.51	3.05
	SC2 Purchased and consumed grid electricity	11.36	4.42	7.58	-	11.36	1.32	36.05
scope z	SC2 Heat networks	-	-	-	-	-	-	
Fotal Scop	e 1 & Scope 2	18.68	9.31	10.60	4.14	19.56	10.54	72.81
	SC3 Building energy (building not owned)	-	-	-	-	-	-	-
	SC3 Refrigerants (building not owned)	-	-	-	-	-	-	-
	SC3 Travel (vehicles not owned)	0	0	0	0	0	0	-
	SC3 Employee business travel-road, rail, air	0.02	0.02	0.02	0.01	0.02	0.04	0.11
Second 2	SC3 Water	-	-	-	-	-	-	-
scope 3	SC3 Waste	-	-	-	-	-	-	-
	SC3 Contractor logistics	0.25	0.25	0.25	0.25	0.25	-	1.23
	SC3 Construction materials	-	-	-	-	-	-	-
	SC3 Inhalers	0.39	0.38	0.39	0.46	0.39	0.34	2.34
	SC3 supply chain	0.78	0.02	0.28	0.97	0.38	1.40	3.83
Fotal Scop	2 3	1.43	0.66	0.93	1.69	1.03	1.78	7.51
Fotal All Scopes		20.10	9.97	11.52	5.83	20.58	12.31	80.32

- Monthly CO2-e emissions analysis for Mt Darwin District Hospital.
- Data presented in metric tonnes.
- Emissions categorised under three distinct scopes

Table 1: Monthly Carbon Emissions Breakdown by Scope and Emission Area (January to June)

Emissions by source and scope

Scope 1 Scope 2 Scope 3

- Total half yearly breakdown:
- CO2-e emissions (in metric tonnes) for Mt Darwin District Hospital.
- Emissions categorized under three scopes

Scope 1 includes direct emissions from the hospital's operations, such as building energy consumption, travel, on-site incineration, and anaesthetic gases.

For the first half of the year, the most significant contributor under this scope is travel, with a total of **27.75** metric tonnes.

Scope 2 captures indirect emissions from purchased electricity and heat networks.

The most dominant emission source here is the purchased and consumed grid electricity, totaling **36.05** metric tonnes over six months.

Scope 3 represents other indirect emissions, such as those from buildings not owned by the hospital, travel in vehicles not owned by the hospital, business travel, contractor logistics, inhalers, and supply chain processes.

The supply chain has the highest cumulative emission in this category at **3.83** metric tonnes.

Highest Scope-wise Emission Categories for the First Half of the Year

- When aggregating the data, the total emissions for Scope 1 & Scope 2 combined come to 72.81 metric tonnes, while Scope 3 totals 7.51 metric tonnes.
- Overall, the hospital's total CO2-e emissions for the six-month period amount to **80.32** metric tonnes.
- Travel and Purchased and consumed grid electricity make up the majority of emissions (**35% and 45%,** respectively).

Emission Overview: Scope Distribution & Major Contributors

Interventions in the Study

Emission Source	Units	Annual usage	Intervention	Size	Unit Cost	Costs
Energy	Grid electricity kWh	61474	Solar system	50kVa	12500	62500
	Solar system kWh	18650				
	Generator (diesiel) - 5kVa 1	1530				
	Wood kg	210				
	LP Gas kg	1138				
Transport & Travel	Vehicles Light trucks	24	Hybrid car	2 cars	9400	18800
	Motorbike # of people	44				
	Vehicles Medium car	8				
Refrigerant gases	<i>R1234yf</i> kg	180	There are already low emitting			
	R32 Diflurone kg	0.192	There are already low emitting			
	HCF 141B kg	570	There are already low emitting			
Water	Water 1	1712842	Water efficiency and fixture appliance	1 program	1100	1100
Waste	Pharmarceutical waste kg	1170	Waste management program			
	Mixed clinical and non clinical kg	2462	Waste management program			
	Mixed clinical infectious kg	1674	Waste management program			
	Mixed recyclable kg	2890	Waste management program			
Inhalers	Inhalers Units	598	Low GPW inhalers	598 inhalers	33	19734
Building & Construction	Plastic cables Units	4000				
	Asbestos Units	1700				
	Metals Units	400				
Anaesthetic gases	anaesthetic gases ml	3.5	Low GPW emitting anaesthetic gases	3.51	102.2714286	357.95

Coverage & Budget Scenarios & Optimization

• Full Coverage Scenario: Interventions are implemented across all facilities, each scaled to its maximum potential without considering cost. This showcases the fullest potential impact of each intervention.

HÊH
HORIZONS

Impact of scaling up each intervention individually to full coverage

Full coverage	Total emissions	% change
Status-quo	75.28	
Solar system	37.54	-50%
Carpooling and ride sharing	67.47	-10%
Low GPW anaesthetic gases	72.26	-4%
Low GPW refridgerant gases	75.28	0%
Water efficient fixtures and appliances	74.48	-1%
Low GPW inhalers	73.31	-3%

In the fixed budget scenario,
interventions are scaled up individually
within the constraints of a specified
budget (\$20,000 here).

Fixed budget	Total emissions	% change
Status-quo	75.28	
Solar system	63.20	-16%
Carpooling and ride sharing	67.47	-10%
Low GPW anaesthetic gases	72.26	-4%
Low GPW refridgerant gases	75.28	0%
Water efficient fixtures and appliances	74.48	-1%
Low GPW inhalers	73.31	-3%

Optimization	Total emissions	% change
Status-quo	75.28	
\$20.0k	60.32	-20%
\$50.0k	42.15	-44%
\$100.0k	24.20	-68%

With a dedicated budget allocation ranging from \$20,000 to \$100,000, the facility can expect to realise a significant decrease in its carbon emissions.

Optimization	Total emissions	% change
Status-quo	75.28	
\$20.0k	60.32	-20%
\$50.0k	42.15	-44%
\$100.0k	24.20	-68%

HIGH

Percentage in Carbon Emission Reduction in different budget scenarios

Optimized allocation		\$20.0k		\$50.0k		\$100.0k	
Solar system	\$1	9,015.66	\$4	48,547.55	\$6	2,507.55	
Carpooling and ride sharing	\$	-	\$	-	\$1	8,806.65	
Low GPW anaesthetic gases	\$	357.94	\$	358.14	\$	362.54	
Low GPW refridgerant gases	\$	-	\$	-	\$	-	
Water efficient fixtures and appliances	\$	626.40	\$	1,094.31	\$	1,117.82	
Low GPW inhalers	\$	-	\$	-	\$1	7,205.44	

Corresponding coverages	\$20.0k	\$50.0k	\$100.0k
Solar system	30%	78%	100%
Carpooling and ride sharing	0%	0%	100%
Low GPW anaesthetic gases	100%	100%	100%
Low GPW refridgerant gases	0%	0%	0%
Water efficient fixtures and appliances	57%	99%	100%
Low GPW inhalers	0%	0%	87%

- Optimization identified key priority interventions.
- Solar System:
 - Addresses sustainable energy needs.
 - Ensures consistent power for healthcare.
 - Potential for cost savings and energy independence

- Low GPW Anaesthetic Gases:
 - Aligns with global sustainability goals.
 - Maintains quality of care.
 - Represents proactive, responsible medical practices.

- . Water-Efficient Fixtures and Appliances:
 - . Addresses water scarcity challenges.
 - Strategic and sustainable choice.
 - . Balances operational needs with responsible water use

- Potential for more interventions with increased budget.
 - Carpooling and Ride Sharing:
 - Reduces carbon footprint.
 - Addresses staff commuting challenges.
 - Boosts punctuality, morale, and community feeling

- Low GPW Inhalers:
 - Balances medical treatment with eco-friendliness.
 - Reinforces commitment to holistic healthcare.
- Overall:
 - Strategic interventions lead to sustainable, efficient healthcare.

Acknowledgements

- We gratefully acknowledge the European Union's Horizon Research and Innovation programme(Grant Agreement no 101057843) and UKRI Innovate UK for funding the HIGH Horizons project(Reference number: 10038478).
- Their support is instrumental in addressing the health impacts of extreme heat on vulnerable populations.

